skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steele, Doneisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High levels of carrier injection in polycrystalline Si may arise, for example, in solar cells under concentrated sunlight. Mechanisms for non-radiative carrier recombination include trap-mediated SRH and higher-order processes, e.g., Auger recombination [1]. In this paper we present our experimental results for intensity-dependent carrier lifetimes and conduction currents in polycrystalline Si wafers illuminated with pulses of up to 50 Sun intensity. We also use a computational model for carrier transport that includes both SRH and Auger recombination mechanisms, in order to explain our experiments. The model allows quantifying recombination rate dependence on carrier concentration. Our goal is to relate the recombination rates to Si microstructure and defect densities [2] that are revealed by IR PL images. We acknowledge the NSF support through grant 1505377. [1] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B 86, 165202 (2012). [2] H. C. Sio, T. Trupke, D. Macdonald, Quantifying carrier recombination at grain boundaries in multicrystalline silicon wafers through photoluminescence imaging. J. Appl. Phys. 116, 244905 (2014). 
    more » « less